
Method-Level Syntactic and Semantic Clustering
for Microservice Discovery in Legacy Enterprise
Systems
ADAMBARAGE ANURUDDHA CHATHURANGA DE ALWIS1, ALISTAIR BARROS1, COLIN FIDGE1,
and ARTEM POLYVYANYY2
1Queensland University of Technology (QUT), Australia (e-mails: anuruddhadealwis@gmail.com, alistair.barros@qut.edu.au, c.fidge@qut.edu.au)
2The University of Melbourne, Australia (e-mail: artem.polyvyanyy@unimelb.edu.au)

Corresponding author: Colin Fidge (e-mail: c.fidge@qut.edu.au).

The research was supported in part through Australian Research Council Discovery Project DP220101516, Embedding Enterprise Systems
in IoT Fog Networks through Microservices

ABSTRACT Enterprise systems, such as enterprise resource planning, customer relationship management,
and supply chain management systems, are widely used in corporate sectors and are notorious for being
large, inflexible and monolithic. Their many application-specific methods are challenging to decouple
manually because they manage asynchronous, user-driven business processes and business objects having
complex structural relationships. We present an automated technique for identifying parts of enterprise
systems that can run separately as fine-grained microservices in flexible and scalable Cloud systems. Our
remodularization technique uses both semantic properties of enterprise systems, i.e., domain-level business
object and method relationships, together with syntactic features of the methods’ code, e.g., their call
patterns and structural similarity. Semantically, business objects derived from databases form the basis for
prospective clustering of those methods that act on them as modules, while on a syntactic level, structural
and interaction details between the methods themselves provide further insights into module dependencies
for grouping, based on K-means clustering and optimization. Our technique was prototyped and validated
using two open-source enterprise customer relationship management systems, SugarCRM and ChurchCRM.
The empirical results demonstrate improved feasibility of remodularizing enterprise systems, inclusive of
coded business objects and methods, compared to microservices constructed using class-level decoupling of
business objects only. Furthermore, the microservices recommended, integrated with ‘‘backend’’ enterprise
systems, demonstrate improvements in execution efficiency, scalability, and availability.

INDEX TERMS Microservice discovery, enterprise systems, system remodularization.

I. INTRODUCTION
Microservice (MS) architectures are the latest systems archi-
tectural style, evolving service-oriented architectures (SOAs)
to enable high-performance, Internet-scale, continuously de-
ployed, and composable applications [1], [2]. They support
fine-grained and autonomous software components, which
communicate via lightweight protocols and manage local
and synchronized databases. Many research and practitioner
articles highlight the common ground between an SOA and
a microservice architecture, starting with both systems com-
prising component based services. The general properties of
services stemming from SOAs, and extended to microser-
vices, include: high cohesion (intra-module dependencies);
low coupling (inter-module dependencies); and encapsulation
functionality through operations focussed on the business
domain of objects, which for enterprise systems (ESs) entail

business objects (BOs) [1], [2]. The earliest microservice
conceptions were framed on these properties, together with
non-functional properties such as high scalability, availability
and efficiency through execution-time decoupling [2], [3].
Despite the precedent of SOAs for microservice architec-

tural concepts, prominent differences have emerged [4]. An
SOA applies to a centralized system, where data is stored and
accessed by components centrally, and service interactions
between components are coordinated centrally. Instead, mi-
croservices operate in an autonomous and peer-to-peer fash-
ion, where eachmanages its own local database, synchronized
with those of other, distributed microservices. This allows
microservices to be developed and deployed independently,
while achieving overall performance improvements.
With the increasing demand for highly scalable and highly

reliable services, service providers are now moving from

POSTPRINT, June 2025 1



De Alwis et al.: Method-Level Syntactic and Semantic Clustering for Microservice Discovery in Legacy Enterprise Systems

SOAs to microservices. The majority of reported experiences
on microservice development to date concern ‘‘greenfield’’
developments [2], where microservices are produced from
‘‘scratch.’’ Considerable uncertainty remains as to how mi-
croservices can be created by decoupling and reusing parts
of an existing system through reengineering. This is of crit-
ical importance for corporate sectors relying on large-scale
enterprise systems, e.g., enterprise resource planning (ERP)
and customer-relationship management (CRM), to manage
their operations. These systems often reflect decades of de-
velopment and investment, and their uninterrupted, long-term
operation is essential.

Analyzing enterprise systems to identify parts suitable
for decoupling as microservices is technically cumbersome,
given the millions of lines of code, thousands of database
tables, and extensive functional dependencies typical of their
implementations. The BOs embodied by the system have
complex relationships to enable asynchronous, user-driven
processes [5]–[8]. For example, an order-to-cash process in
SAP ERP has multiple sales orders, with deliveries shared
across different customers, shared containers in transporta-
tion carriers, and multiple invoices and payments, which
may be processed before or after delivery [9]. This poses
challenges for extracting effective and efficient microservices
from enterprise system code using classical software reengi-
neering principles.

In early research, software remodularization tech-
niques [10]–[12] were proposed for static analysis of software
systems to identify key characteristics and dependencies of
modules, typically to abstract suitable classes using graph for-
malisms [13], [14]. New modules can be recommended using
clustering algorithms and coupling and cohesion metrics. The
focus of such static analysis techniques includes inter-module
structure (class inheritance hierarchies), i.e., structural in-
heritance relationships, and inter-module interactions (object
references), i.e., structural interaction relationships. Given
that degradation of the logical design reflected in a software
implementation can result in classes with low cohesion,
other techniques have been proposed to compare structural
properties of classes and methods using information retrieval
techniques [12], i.e., structural class and method similarity.

At the same time, various microservice design patterns
have emerged in the literature to help develop microservices
by considering the semantics provided through BO relation-
ships [15]–[18]. Nonetheless, the success rate of software
remodularization projects remains low [19] and little work
has been done on combining both semantic and syntactic
aspects of software systems to derive microservices.

In our initial investigations into this problem, we previ-
ously presented a software remodularization technique for
automatically discovering microservices in enterprise sys-
tems via features of software classes [20], [21]. This al-
lowed us to identify multi-function software modules that
combine classes and their related business objects as po-
tential microservices. Here we refine that previous work to
the level of individual methods to provide a finer-grained

remodularization technique. As well as traditional create,
read, update, and delete operations in enterprise systems,
such an approach allows for modern Internet-based services
that provide high-throughput, single-functionality operations
such as video streaming [22].
Therefore, in this article we (a) consolidate our previ-

ous class-level microservice discovery techniques [20], [21],
(b) refine them to the level of individual methods, and (c) di-
rectly compare the effectiveness of class-level and method-
level microservice extraction from monolithic enterprise sys-
tems. ‘‘Syntactic’’ properties are derived from method in-
teraction relationships and structural method similarity in
the program code, while ‘‘semantic’’ properties are derived
from analyzing the BO-to-BO relationships in the system’s
database and BO-to-method relationships.
To confirm the value of the approach, here we consider

microservice recommendations produced by both our earlier
class-level analysis [20] and our new method-level analysis,
using the same enterprise system case studies and clustering
techniques, to answer the following three research questions.

• RQ1: How do cohesion and coupling of microservices
recommended by method-level and class-level analyses
compare?

• RQ2: How do scalability, availability, and execution
efficiency in microservice-based cloud environments
recommended by method-level and class-level analyses
compare?

• RQ3: How do scalability, availability, and execution
efficiency in microservice-based cloud environments
recommended by method-level analyses compare with
microservices that do not follow the recommendations?

The remainder of this article: describes the background
on system remodularization techniques and an architecture
for remodularization of enterprise systems to microservices
(Section II); presents our microservice discovery approach
(Section III); describes the implementation and evaluation of
our approach in order to answer the above research questions
(Section IV); discusses related work (Section V); and reflects
on conclusions drawn (Section VI).

II. BACKGROUND AND MOTIVATION
This section provides a brief review of existing software
remodularization and microservice discovery techniques,
including their relative strengths and weaknesses (Sec-
tion II-A). Further detail can be found in the discussion of
related research below (Section V). It then presents the archi-
tecture of enterprise systems and their links to microservices
(Section II-B) as assumed by our microservice discovery and
software remodularization technique (Section III).

A. SOFTWARE REMODULARIZATION TECHNIQUES
Software remodularization techniques [10], [12] involve anal-
ysis of different facets of systems, including software struc-
ture and behavior, functional and non-functional require-
ments, and provide recommendations for system reengineer-
ing (i.e., restructuring or redeveloping software components

2 POSTPRINT, June 2025



De Alwis et al.: Method-Level Syntactic and Semantic Clustering for Microservice Discovery in Legacy Enterprise Systems

to obtain better code structure and performance). Static anal-
ysis techniques have focused on analyzing code structure and
database schemas of software systems [23] while dynamic
analysis studies interactions of systems [24]. Both approaches
provide complementary information for assessing properties
of system modules based on high cohesion and low coupling,
and make recommendations for improved modularity. How-
ever, static analysis is preferable for broader units of analysis
(i.e., systems or subsystems level) as all possible cases of a
system’s execution are covered compared to dynamic analysis
which considers observed event sequences only [11].

Traditionally, research into software remodularization
based on static analysis has focused on a system’s implemen-
tation through two aspects of coupling and cohesion evalu-
ation. The first is structural coupling and cohesion, which
focuses on relationships between declared classes and meth-
ods in the program code. These include structural inheri-
tance relationships between classes and structural interaction
relationships which result when one class creates another
class and uses an object reference to invoke its methods [10].
Structural relationships such as these are automatically pro-
filed through Module Dependency Graphs (MDG) [10], [11],
and are used to group classes using K-means, Hill-climbing,
NSGA II and other clustering algorithms.

The second is structural class and method similarity (oth-
erwise known as conceptual similarity of the classes and
methods) [12]. This draws from information retrieval (IR)
techniques, for source code comparison of classes and meth-
ods, under the assumption that similarly named variables,
methods, object references, tables and attributes in database
query statements, etc., infer conceptual similarity of classes
and methods. Relevant terms are extracted from the classes
and methods and used for latent semantic indexing and cosine
comparison to calculate the similarity value between them.
Class and method similarity thus provides intra-module mea-
surements for evaluating coupling and cohesion, in contrast to
the inter-module measurements provided through structural
coupling and cohesion as described above.

Despite many proposals for automated analysis of systems,
studies show that software remodularization remains a major
challenge with a low success rate [19]. A prevailing problem
is the limited insights produced by purely syntactic structures
of software code for deriving structural and interactional rela-
tionships between modules. More recently, semantic insights
available through BO relationships have been exploited to
improve the feasibility of architectural analysis of applica-
tions. Enterprise systems manage domain-specific informa-
tion using BOs, through the ES’s databases and business
processes [7]. Evaluating the BO relationships and deriving
valuable insights from them to modularize software systems
falls under the category of semantic structural relationships
analysis.

Such semantic relationships are highlighted by Pẽrez-
Castillo et al.’s experiments [25] in which the transitive clo-
sure of strong BO dependencies derived from databases was
used to recommend software function hierarchies, and by Lu

et al.’s experiments [26] in which SAP ERP logs were used
to demonstrate process discovery based on BOs.
Our own previous research on microservice discovery

based on BO relationship evaluation showed the value of con-
sidering semantic structural relationships in software remodu-
larization [27], [28]. In this previous work, we highlighted the
impact of integrating semantic structural relationships with
class level structural inheritance relationship analysis and
class level structural interaction relationship analysis [20].
However, microservices are fine-grained components typi-
cally based on the single responsibility principle, making
them focus on single functionality [2] rather than broad units
such as classes.
To achieve granularity at the level of single-function mi-

croservices both domain-driven design (i.e., object-based
scoping) and capability-driven design (i.e., task-based scop-
ing) are required. Capabilities, representing business tasks,
are used to refine components that focus on individual BOs,
rather than the classical scoping of components under the
SOA paradigm. Furthermore, relationships between software
components, i.e., intra- and inter-structural relationships such
as object inheritance, association and aggregation [29] should
be analyzed at the level of individual operations to obtain
proper insights into system decomposition for microservices.
Much research relies on expert knowledge [30], [31] to iden-
tify potential microservices or defines ‘‘classes as the small-
est unit for microservice extraction’’ [32]. Therefore, in this
paper, we focus on method-level analysis to perform a finer-
grained analysis of systems than in previous research.

B. ARCHITECTURE FOR ENTERPRISE SYSTEM TO
MICROSERVICE REMODULARIZATION
As detailed above, multiple factors must be considered for
microservice derivation. In this section we define the impor-
tance of factors relating to the architectural configuration of
the enterprise system and its microservices.
As depicted in Figure 1, an enterprise system consists of

a set of self-contained modules drawn from different sub-
systems and deployed on a ‘‘backend’’ platform. A module
consists of a set of software classes that are developed using
object-oriented programming (OOP) languages such as Java,
.Net, C# and PHP, and use object references to access and
share inter- and intra-module data [33], [34]. The classes con-
tain internal system operations and operations that manage
BOs through create, read, update, and delete (CRUD) opera-
tions. For instance, in Figure 1 the classes in the ‘Order Man-
agement Module’ are ‘Class_Order’, ‘Class_OrderCal’ and
‘Class_OrderMan’. They all contain operations that manipu-
late data related to ‘Order’ BOs, whereas ‘Class_ProductVal’
contains operations manipulating data related to ‘Product’
BOs, and ‘Class_ECM’ has operations related to ‘ECM’BOs.
Although operations reside in classes used to manipulate

the data in BOs, some operations transfer or pass data be-
tween them for processing. This can lead to a situation where
one operation calls (i.e., refers to) another operation, either
requesting information or passing processed information as

POSTPRINT, June 2025 3



De Alwis et al.: Method-Level Syntactic and Semantic Clustering for Microservice Discovery in Legacy Enterprise Systems

Order Management Module

Enterprise System

OP1[Order]

OPn[Product]

Class_Order
Product Module

Class_Product

Legacy Database System

Microservice System

Shared Context 
DB

Text

Shared Context 
DB2

Map Function[order]

OP1[Order]

Adapter

--

OPm[]

--

OPm[Order]

Map
Function[Product]

OP1[Product]--

OPy[Product]

OP1[Product]

OPy[Product]

--

Class_ProdutMan
OP1[Product]

OPy[]

--

OP1[Order]
Class_OrderCal

OPd[Order]

--

OP1[Order]

OPn[Product]

Class_OrderMan

OPm[Order]

--

OP1[Product]
Class_ProductVal

OPe[Product]

--

Order Management
Microserivice

OP1[Order]
Class_Order

Product Microservice
Class_Product

OPm[]

--

OP1[Product]

OPy[Product]

--

Class_ProdutMan
OP1[Product]

OPy[]

--

OP1[Order]
Class_OrderCal

OPd[Order]

--
OP1[Order]

Class_OrderMan

OPm[]

--

OP1[Product]
Class_ProductVal

OPe[Product]

--

Order
+ id
+ itemName

Orchestrator Microservice

Product
+ id
+ name

Container2

Order
+ id
+ itemName

ECM
+ ecmId:
+ description

1

1..*

Shipment
+ id
+ productName
+ amount

Element
+ elementId
+ descriptio

1
1..*

User
+ id
+ Name

At-Store Reclamation
+ storeAddress

Generic Transport
+ courierNumber

Product
+ id
+ name

1..*

1..*

1

1..*

OP1[ECM]
Class_ECM

OPt[ECM]

--

OP1[ECM]
Class_ECM

OPt[ECM]

--

ECM 
Management 
Microserivice

ECM
+ ecmId:
+ description

1

1..*

Container1

Map Function[ECM]
OP1[ECM]--

OPt[ECM]

Class Subtype Relationships Object Reference Relationships Method Call Relationships

FIGURE 1. Overview of an enterprise system extended with extracted microservices.

parameters for additional processing. For example, in Fig-
ure 1 the relationship between operations ‘OP1[Order]’ and
‘OPm[Order]’ in ‘Class_OrderMan’, can be considered as a
situation where ‘OP1[Order]’ refers to ‘OPm[Order]’ to ex-
tract some information related to the ‘Order’ BO. On the other
hand, the relationship between ‘OP1[Order]’ and ‘OPm[]’
in ‘Class_Order’, can be considered as a situation where
‘OP1[Order]’ passes some information to ‘OPm[]’ for addi-
tional processing. Sometimes these operational relationships
are extended between classes in different software modules
as depicted by the operational relationship existing between
‘OP1[Product]’ in ‘Class _ProductVal’ and ‘OP1[Product]’
in ‘Class_ProductMan’ in which ‘Class_ProductVal’ belongs
to the ‘Order Management Module’ and ‘Class_ProductMan’
belongs to the ‘Product Module’.

Data management of an enterprise system is performed
through BOs residing in databases managed via CRUD oper-
ations, as depicted by the legacy database system in Figure 1.
Such BOs can have complex lifecycle relationships [27],
[28], e.g., subtyping is shown by the ‘At-Store Reclamation’
and ‘Generic Transport’ objects, which are specialized from
‘Shipment’. ‘Shipment’ objects are made up of ‘Elements’
and control their creation/deletion resulting in an exclusive

containment relationship. An ‘Order’ object is made up of
‘Products’ but does not control their creation/deletion, and
so embodies an inclusive containment relationship. Objects
can also have general association relationships as depicted
by ‘User’ and ‘Order’.
Microservices, on the other hand, support a subset of sys-

tem operations through classes andmethods which are related
to individual BOs only. Such implementations lead to high
cohesion within microservices and low coupling between
the microservices (see the ‘Order Management Microservice’
and ‘Product Microservice’ in Figure 1). More specifically,
these microservices contain operations related to the same
BO while having generalization and object reference rela-
tionships. Developed in this way, microservices are able to
maximize operational calls within modules and minimize op-
erational calls between them. This is depicted by the ‘Product
Microservice’ in which ‘Class_ProductVal’ is clustered with
two other classes, which are highly related to the ‘Product’
BO while ensuring that operation ‘OP1[Product]’ in ‘Class
_ProductVal’ makes an internal object reference and opera-
tional calls to ‘OP1[Product]’ in ‘Class_ProductMan’.
The microservices communicate with each other through

API calls when they require information related to BOs resid-

4 POSTPRINT, June 2025



De Alwis et al.: Method-Level Syntactic and Semantic Clustering for Microservice Discovery in Legacy Enterprise Systems

ing in other microservices. For example, an ‘Order Manage-
ment Microservice’ can acquire product data through an API
call to the ‘Product Microservice’ as depicted in Figure 1. Ex-
ecution of operations across the enterprise and microservice
systems are coordinated through business processes, which
means that invocations of BO operations on the microservices
will trigger operations on enterprise system functions involv-
ing the same BOs. As is necessary in distributed systems,
BO data must be synchronized across databases managed by
microservices and the enterprise system periodically.

Based on this understanding of the structure of enterprise
systems and microservices, syntactic relationships can be
analyzed at two levels, i.e., at the class level and the method
level, while including the semantics provided by the object re-
lationships. Evaluation of class level relationships to discover
microservices is detailed in our previous work [20], in which
we used the structural inheritance and interaction relation-
ships for class clustering. However, such class-level syntactic
and semantic analysis produces coarse-grained components
formicroservice derivation, since each class containsmultiple
methods. To obtain finer-grained components, in this article
the unit of analysis is shifted from classes to methods.

Interactions between the methods (i.e., calls) can be iden-
tified using structural interaction relationship analysis. Such
techniques do not capture method similarities at the code
level but this information can be captured using structural
method similarity measurement. Based on both structural
interaction relationships and structural similarity, we can then
use clustering techniques to group methods into modules. To
do this, we study the relationships between business objects
and methods. In Figure 1, different classes and methods in the
enterprise system relate to different BOs. The relationships
between these BOs can be used to identify (at least) five
microservice patterns as follows [27], [28].

• Subtyping is where a microservice manages subsets of
operations related to a BO subtype. Since there can be
multiple BO subtypes of a supertype, a microservice can
apply to any given subtype, at any subtype hierarchy
level, and a subset of operations related to that subtype.

• Read-Write Separation is where microservices man-
age subsets of CRUD operations related to a BO such
that each microservice supports either read operations or
create, update and delete operations, i.e., read and write
operations are not mixed in the same microservice.

• Exclusive Containment occurs when one microservice
relates to a parent (or composite) BO and other microser-
vices manage its child BOs, such that the existence of
a child BO depends on the continuing existence of the
parent BO, via create, update and delete operations.

• Inclusive Containment occurs when one microservice
relates to a parent (or aggregate) BO and other microser-
vices manage its child BOs, but the existence of the
child BOs does not depend on the parent’s existence. The
children exist independently but are used in the context
of the parent.

• Association is where onemicroservice relates to one BO

and the other microservice manages another BO, but the
existence of both BOs are independent of each other.
Since there is no dedicated tight-coupling, there is no
requirement to strictly co-locate them.

This understanding emphasizes the importance of consid-
ering semantic structural relationships in the microservice
derivation process, since each microservice should aim to
contain methods that are related to each other and perform
operations on the same BO (like the ‘Order Management
Microservice’ and ‘Product Microservice’ in Figure 1).
Previous research has extensively used structural relation-

ships in system remodularization [10]–[12]. However, when
it comes to microservice derivation, our research assumes that
combining both semantic structural and syntactic structural
relationships will allow derivation of better method clusters
suitable for microservice implementation. Previously we did
this at the level of software classes [20], but here refine
the concept to the method level, using the above system
architecture context and our understanding of the features that
should be evaluated for microservice systems to develop our
algorithms for microservice discovery (Section III).

III. CLUSTERING RECOMMENDATION FOR
MICROSERVICE DISCOVERY
In our previous class-level research we used a five-step mi-
croservice discovery process [20], [21], and again follow the
same strategy for the method-level experiments described
herein.

1) We identify the business objects manipulated by the
enterprise system by evaluating the SQL queries in the
source code and also the database schemas and data as
explained by Nooijen et al. [35].

2) We identify semantic structural relationships by deriv-
ing the relationships between SQL queries in methods
and the corresponding BOs.

3) We analyze the enterprise system’s syntactic structure
firstly by measuring the structural method similarities
between methods, based on the ‘bag of words’ [36]
produced by extracting meaningful identifiers from the
methods’ source code.

4) We capture the structural interaction relationships be-
tween different methods by analyzing their code to
discover their call patterns.

5) The details obtained through Steps 2 to 4 are used by a
K-means clustering algorithm to recommend effective
combinations of methods for microservice deployment.

More detail about the specific algorithms used appears below,
adapted from our previous class-level process [20], [21].
These algorithms were then implemented as a prototype rec-
ommendation system as explained in Section IV-A and used
to produce the experimental results discussed in Section IV-B.
We use the following formalization from here onwards

to describe the algorithms. Let I, O, OP, B, T, and A be
a universe of input types, output types, operations, busi-
ness objects, database tables, and attributes, respectively.

POSTPRINT, June 2025 5



De Alwis et al.: Method-Level Syntactic and Semantic Clustering for Microservice Discovery in Legacy Enterprise Systems

We characterize a database table t ∈ T by a collection of
attributes, i.e., t ⊆ A, while a business object b ∈ B is defined
as a collection of database tables, i.e., b ⊆ T containing
information about the same BO. Let A∗ denote application
of the Kleene star operation to set A. An operation op, either
of an enterprise system or a microservice system, is given as a
triple (I ,O, T ), where I ∈ I∗ is a sequence of input types the
operation expects for input, O ∈ O∗ is a sequence of output
types the operation produces as output, and T ⊆ T is a set
of database tables the operation accesses, i.e., either reads or
augments. Each class cls ∈ CLS is defined as a collection of
operations, i.e., cls ⊆ OP.

In order to derive a satisfactory clustering of system meth-
ods for microservice recommendations, directly comparable
to our previous class-level clustering [20], we supply a K-
means clustering algorithm with different feature sets. (We
used K-means since it helps us evaluate multiple features
and obtain rational clusters, although equivalent results may
be possible using different clustering techniques such as hi-
erarchical clustering, B-Squared, error-based clustering, RB
Clustering, or Direct clustering [37], [38].)

To derive these feature sets, we use Algorithm 1. This
method-level discovery algorithm was also used in our earlier
research into microservice discovery for Industrial Internet-
of-Things applications [21], and a longer description of it can
be found there.

In the first step letBOS (line 2) be a function used to derive
BOs B from enterprise systems as detailed by Nooijen et
al. [35], and CLSEXT (line 3) be a function which searches
through different folder and package structures and extracts
classes’ source code. The extracted classesCLS are then used
in functionMTDEXT (line 4) which extracts the source code
of the methods related to the classes.

The second step then extracts the information needed for
structural method similarity analysis using information re-
trieval (IR) techniques. LetUWORDEXT (line 5) be a func-
tion on the source code of the methods MTD , and unhelpful
‘‘stop words’’ STW [39] which provide no insights into the
code’s purpose. In our scenario, these are standard keywords
related to the method definitions in the particular program-
ming language (PHP here) and common English words, as
determined by the user. The function filters out the stop words
from the given method, identifies words that are not already
in unique word sequence UW , and adds them. The result
is a ‘bag of words’ [36] relevant to the enterprise system’s
purpose. For instance, a typical enterprise system’s code will
contain meaningful words such as ‘Product’, ‘Order’, ‘Inven-
tory’, ‘Purchase’, ‘Shipment’, ‘Customer’, ‘Tax’, and so on.

In the third step the algorithm evaluates each method mtd
to identify their related business objects. Let BCOUNT
(line 8) be a function on a method’s code that counts the
SQL statements, comments and method names that refer to
database tables forming a particular business object. This
information is stored in matrix mtdborel (lines 6–8) which
contains the number of references that each method i makes
to each business object k . These numbers help capture the

semantic structural relationships, providing a measure of the
‘‘boundedness’’ of methods to BOs.
Similarly, in the fourth step, let WCOUNT (line 10) be

a function which returns the number of times a method i
is related to a unique word s. It is used to construct matrix
mtduwcount .
The values in mtduwcount are then used to calculate the

cosine similarity between each pair of methods i and k using
function MTDCOSINECAL (lines 11 and 12). This func-
tion first normalizes the term frequencies with the respective
magnitude L2 norms, then calculates the cosine similarity
between two given methods, by calculating the cosine value
between the corresponding vectors of matrix mtduwcount
(i.e., those rows related to the two methods) and saves the val-
ues in matrix mtdcosine . This step provides the conceptual
method similarity data we require for clustering. The lower
the cosine similarity, the lower the possibility of methods
being related to the same concept.
In the sixth step, the algorithm extracts the structural in-

teraction relationships (i.e., method call relationships). Let
MTDRELCAL (line 13) be a function on the source code
which first produces graphs of classes, their methods, and the
method call relationships. (In practice we used the Mondrian
code analysis tool1 to do this.) The function then analyzes the
graphs to create binary matrix mtdrel which summarizes the
method call relationships between any two methods. Value
mtdrel [i][j] is 1 if method i calls method j and 0 otherwise.
The feature set data in matrices mtdborel , mtdcosine,

mtdrel (see the example in Figure 2) and the BOs B obtained
from Algorithm 1 are then provided as input to Algorithm 2
to cluster the methods related to BOs based on their syntactic
and semantic relationships. This algorithm was used in our
previous class-level experiments [20], so is re-used here to
allow a direct comparison of the class-level and method-level
results. (An earlier, shorter description of the algorithm was
provided previously [20], but for clarity here we have ex-
panded the explanation of the concrete example in Figure 2.)
Another input to the algorithm is an array of initial centroid

values. Each intcent ∈ IntCent is a row number in the data
set that we provide. For example, one can select the first row
of the data set as we have in Figure 2, which is highlighted in
red as an initial centroid point. In that situation, IntCent will
contain the data related to that specific row of the data set.
Given these data sets as input to Algorithm 2, we initialize

a distance difference value distDif to some constant, e.g.,
10 (line 1). Variable distDif is responsible for capturing
the distance differences between the initial centroids IntCent
and the newly calculated centroids NewCent (line 14). The
algorithm terminates when this difference is zero (line 2).
The first step in each iteration is to initialize a set of

clusters CLUS (line 3), which we use to store the node
groups identified by the algorithm. To start the process, let
INITCLUSTERS be a function which allocates random
‘‘nodes’’, i.e., rows in Figure 2, to each of k clusters.

1https://github.com/Trismegiste/Mondrian

6 POSTPRINT, June 2025



De Alwis et al.: Method-Level Syntactic and Semantic Clustering for Microservice Discovery in Legacy Enterprise Systems

Algorithm 1: Discovery of BO and method relationships
Input: System code SC of an enterprise system s, stop words related to methods STW and system database DB
Output: Classes CLS, methods MTD, feature set matrices mtdborel , mtdcosine , mtdrel and BOs B

1 Initialise matrices mtdborel, mtduwcount and mtdcosine with zeros
2 B = {b1 , . . . , bn} ← BOS (SC ,DB);
3 CLS = {cls1 , . . . , clsm} ← CLSEXT (SC );
4 MTD = {mtd1 , . . . ,mtdm} ← MTDEXT (CLS );
5 UW = ⟨uw1 , . . . , uw z⟩ ← UWORDEXT (MTD ,STW )
6 for mtd i ∈ MTD do
7 for bk ∈ B do
8 mtdborel [i ][k ]← BCOUNT (mtdi , bk );

9 for uw s ∈ UW do
10 mtduwcount [i ][s]←WCOUNT (uws ,mtdi);

11 for mtd i, mtd k ∈ MTD do
12 mtdcosine[i ][k ]← MTDCOSINECAL(mtduwcount [i ],mtduwcount [k ]);

13 mtdrel ← MTDRELCAL(MTD);
14 return CLS ,MTD , mtdborel , mtdcosine, mtdrel , B;

(a) mtdborel (b) mtdcosine (c) mtdrel

1

5

3

FIGURE 2. Example method relationship matrices derived using Algorithm 1 and used as input into Algorithm 2

Algorithm 2: K-Means clustering for microservice discovery
Input: Feature set matrices mtdborel , mtdcosine and mtdrel , k which is the number of BOs B, and the initial Centroid

values IntCent
Output: Set CLUS which captures the clustered microservice recommendations

1 distDif ← 10;
2 while distDif ̸= 0 do
3 CLUS = {clus1 , . . . , clusk} ← INITCLUSTERS (k);
4 for 0 ≤ i < size of mtdborel do
5 minEuclideanDis ← 10, 000;
6 for intcentj ∈ IntCent do
7 newEuclideanDis ← EUCAL(intcentj ,mtdborel [i],mtdcosine[i],mtdrel [i]);
8 if newEuclideanDis < minEuclideanDis then
9 minEuclideanDis ← newEuclideanDis;
10 clusterNumber ← j;

11 clusclusterNumber ← clusclusterNumber + i;

12 for clusi ∈ CLUS do
13 NewCent = {newcent1 , . . . ,newcentn} ← NEWCENTCAL(clusi);

14 distDif ← DISTANCECAL(IntCent ,NewCent);
15 IntCent ← NewCent ;

16 return CLUS

POSTPRINT, June 2025 7



De Alwis et al.: Method-Level Syntactic and Semantic Clustering for Microservice Discovery in Legacy Enterprise Systems

Next, we need to identify the cluster that each row of our
dataset should belong to by comparing the distance between
each node in the dataset and each node in the initial centroids
intcent ∈ IntCent . Hence we iterate through each row of the
dataset we obtained fromAlgorithm 1 (line 4 in Algorithm 2),
while calculating the Euclidean distance between each row
and each initial centroid intcent ∈ IntCent (lines 5 to 10).

For this calculation, as the initial step, we define the mini-
mum Euclidean distance valueminEuclidianDis and initial-
ize it to a very large value, e.g., 10,000 (line 5). We assign
such a huge value to distance minEuclidianDis to ensure it
is larger than the value it may receive at the end of the iteration
(line 9).

Then we calculate the Euclidean distance between one data
set, for example, row 1 in Figure 2, and each initial centroid
point given (lines 6 to 10). Next, we identify the centroid that
has the minimum Euclidian distance to the node we obtained
(line 9) and allocate that node number to that particular cluster
clus ∈ CLUS (line 10). This process is carried out until all
the nodes are towards the centroid, with a minimal distance
based on the three feature sets, mtdborel , mtdcosine and
mtdrel .

This clustering emphasizes that the methods related to a
particular cluster are bound to the same BO and are bound to
each other syntactically and semantically. When calculating
the Euclidean distances, we calculate them separately for
each feature set. Let EUCAL (line 7) be a function which,
given a centroid value and three rows from the feature sets,
returns the sum of their Euclidean distances from the centroid.
To illustrate the calculation done by EUCAL, consider the
feature set in Figure 2, where vectors across all three matrices
represent the ‘‘nodes’’ used in the algorithm. Given Node 1
and Node 3 in Figure 2, we calculate the Euclidean distance
between the feature sets ofmtdborel ,mtdcosine andmtdrel
separately and then get the overall Euclidean distance value
by summing them. We do this because we want to give more
focus to themtdborel andmtdrel features, which emphasize
actual syntactic and semantic structural relationships of the
classes. As such, we multiply the Euclidean distances they
produce by two. Applying this calculation to Nodes 1 and 5
in Figure 2, then the mtdborel distance is 18, the mtdcosine
distance is 3.0803 and the mtdrel distance is 3, which leads
to a total distance of (18×2)+3.0803+(3×2)) = 45.0803.

The next step is to calculate the new centroids based on
the clusters obtained (lines 12 and 13). K-means clustering
identifies the nodes related to each cluster by measuring
the distance from the center node to the other nodes. Let
NEWCENTCAL be a function used to calculate the mean
distances of the node data sets belonging to each cluster. This
set is assigned to the new centroidNewCent . The algorithm’s
initial iteration identifies the set of nodes related to each
cluster. After this first clustering, each iteration takes the
average of each node related to each cluster, which becomes
the new centroid, i.e., center point, of that cluster.

Finally, letDISTANCECAL (line 14) be a function which
returns the distance difference between two centroids. It is

used to find the distance between the initial centroids and the
new centroids, distDif . If this difference is zero, it means that
there is no change of the centroid points and the algorithm has
come to the optimum clustering point, so stops (line 2). If not,
the newly calculated centroids become the initial centroids for
the next iteration of the algorithm (line 15). The final set of
clusters, each of which contains a set of methods related to
the same BO, are the result (line 16), and can be used as the
basis for creating new microservices.

IV. IMPLEMENTATION AND VALIDATION
To demonstrate the applicability of the approach described
in Section III, we developed a prototype microservice rec-
ommendation system2 capable of discovering method clus-
ters related to different business objects, to produce dif-
ferent microservice configurations. The system was tested
against two open-source customer relationship management
systems, SugarCRM3 and ChurchCRM4. SugarCRM consists
of more than 8,000 files and 600 attributes in 101 tables,
while ChurchCRM consists of more than 4,000 files and 350
attributes in 55 tables. However, most of the files are HTML
files which relate to third-party components used by the
systems. For the clustering, we used only the 1,400 program
code classes of SugarCRM and 280 classes of ChurchCRM
which capture the systems’ core functionalities.
Using our implementation, we performed static analyses of

the source code to identify the BOs managed by the systems.
As a result, 18 BOs were identified in SugarCRM, e.g., ‘ac-
count’, ‘campaign’, and ‘user’, and 11 BOs in ChurchCRM,
e.g., ‘user’, ‘family’, and ‘email’. Then we performed static
analyses of both systems to derive matrices, similar to those
depicted in Figure 2, summarizing the BO relationships,
method similarity relationships andmethod call relationships.
All the obtained results were processed by our prototype
to identify method clusters as the basis for recommending
microservices. Based on the input, the prototype identified
18 method clusters related to the BOs in SugarCRM and 11
method clusters related to the BOs in ChurchCRM. Each such
cluster suggests methods for developing a microservice that
relates to a single business object.

A. EXPERIMENTAL SETUP
To answer our three research questionswe conductedmultiple
experiments. Experiments to evaluate class-level clustering
alone were conducted in our previous work [20] so we have
not repeated the details here, but have included the empiri-
cal results below for comparison with our new experiments.
Below we detail the new experimental setup we used to
evaluate method-level clustering for microservice discovery.
The results from both sets of experiments are compared in
Section IV-B.
Formethod-level evaluation, we set up the following exper-

iment consisting of three steps. In the first, we evaluated the

2https://github.com/AnuruddhaDeAlwis/KMeans.git
3https://www.sugarcrm.com/
4http://churchcrm.io/

8 POSTPRINT, June 2025



De Alwis et al.: Method-Level Syntactic and Semantic Clustering for Microservice Discovery in Legacy Enterprise Systems

effectiveness of method clustering based on the feature sets
that we derived (i.e., feature 1:mtdborel, feature 2:mtdcosine,
feature 3: mtdrel). We evaluated this by measuring the Lack
of Cohesion (LOC) and Structural Coupling (StrC) of the
clusters, as detailed by Candela et al. [19]. The values for
the enterprise system were calculated by first grouping the
classes into folders while conserving the original package
structure, as per the first rows in Tables 1 to 4. Then we
clustered the classes created using our new method-level
analysis. Themethod-level values are reported in the last rows
of Tables 1 to 4. Note that we have recorded the cohesion and
coupling values we obtained in our previous class-level anal-
ysis [20] in the second rows in Tables 1 to 4 for comparative
purposes.

After evaluating the effectiveness of various features for
clustering, we assessed the efficacy of introducing microser-
vices to the enterprise system. To this end, we first hosted
each enterprise system in an AWS cloud by creating two
EC2 instances having two virtual CPUs and a total mem-
ory of 2GB, as depicted on the left side of Figure 3. The
systems’ data were stored in a MySQL relational database
instance which has one virtual CPU and total storage of
20GB. Afterward, these systems were tested against 100 and
200 executions generated by four machines simultaneously,
simulating customer requests.We recorded the total execution
time, average CPU consumption, and average network band-
width consumption for these executions, as shown in Tables 5
and 6. For SugarCRM, we tested the functionality related
to process ‘‘campaign creation’’, while for ChurchCRM we
tested the functionality related to ‘‘adding new people’’ to
the system. The simulations were conducted using Selenuim5

scripts which ran the system in a way similar to a real user.
Next, we introduced ‘campaign’ and ‘user’ microservices

to the SugarCRM system and ‘person’ and ‘family’ microser-
vices to the ChurchCRM systemwhich were developed based
on the method clusters suggested by our algorithms. For Sug-
arCRM the CRUD method clusters suggested were related
to the ‘campaign’ and ‘user’ BOs and for ChurchCRM the
CRUDmethod clusters suggested were related to the ‘person’
and ‘family’ BOs.

As depicted on the right side of Figure 3, we hosted each
microservice on an AWS elastic container service (ECS),
containing two virtual CPUs and a total memory of 1GB. The
BO data of each microservice (i.e., the campaign BO and
user BO data of SugarCRM and the person BO and family
BO data of ChurchCRM) were stored in separate MySQL
relational database instances with one virtual CPU and a total
storage of 20GB. Afterward, tests were performed on both
enterprise systems, again simulating ‘‘campaign creation’’ for
SugarCRM and ‘‘adding new people’’ for ChurchCRM.

Since the microservices were refactored parts of the en-
terprise systems in these tests, the enterprise systems used
API calls to pass the data to the microservices and the mi-
croservices processed and sent back the data to the enterprise

5https://www.seleniumhq.org/

systems. The microservice databases and the enterprise sys-
tem databases were synchronized using the Amazon database
migration service. This helps to preserve consistency be-
tween the ES database and the microservices. Furthermore,
the databases’ ACID properties are preserved through this
synchronization.
Again, we recorded the total execution time, average CPU

consumption, and average network bandwidth consumption
for the entire system, i.e., the enterprise system and microser-
vices as a whole, as per the third and fourth rows in Tables 5
and 6. The scalability, availability and execution efficiency of
the systems were calculated based on the attained values. The
results obtained are summarized in the third rows of Tables 7
to 9 as ‘‘ES &method-level MSs’’. Scalability was calculated
according to the resource usage over time, as described by
Tsai et al. [40]. To determine availability, first we calculated
the packet loss for one minute when the system is down
and then obtained the difference between the total up-time
and total time, i.e., up-time + down-time, as described by
Bauer et al. [41]. Dividing the total time taken by the legacy
system to process all requests by the total time taken by
the corresponding enterprise system which has microservices
defined the efficiency gain.
In the third experiment, we created deliberately poorly-

designed, ‘‘arbitrary’’ microservices that did not follow the
suggestions provided by our recommendation system. We
developed ‘campaign’ and ‘user’ microservices for Sugar-
CRM, while introducing operations relating the ‘campaign’
and ‘user’ microservices and operations relating the ‘user’
and ‘campaign’ microservices, respectively. Similarly, for
ChurchCRM, we developed ‘person’ and ‘family’ microser-
vices such that the ‘person’ microservice contains operations
related to the ‘family’microservice and the ‘family’microser-
vice contains operations related to the ‘person’ microservice.
With this change, we again set up the experiment as described
earlier and obtained the experimental results shown in the
final two rows in Tables 5 and 6. Then we calculated the scal-
ability, availability and execution efficiencies of the systems
which are summarized in the final rows in Tables 7 to 9 as
‘‘ES & ‘arbitrary’ MSs’’.

B. EXPERIMENTAL RESULTS
The outcomes of all of our experiments are shown in Ta-
bles 1 to 9. Tables 1 and 2 compare ‘‘lack of cohesion’’ and
‘‘structural coupling’’ for each of the clusters related to the 11
business objects identified in ChurchCRM and SugarCRM,
respectively, showing values for the original enterprise sys-
tem, the microservices recommended by our previous class-
level analysis [20], and the newly-obtained results using
method-level analysis. The last column shows average ‘‘lack
of cohesion’’ values across all BOs—the lower the value the
higher the cohesion. Similarly, Tables 3 and 4 do the same for
the 18 BOs extracted from SugarCRM.
Tables 5 and 6 show various performance characteristics

for SugarCRM and ChurchCRM, respectively. Values are
shown for each system stressed by 100 and 200 simultaneous

POSTPRINT, June 2025 9



De Alwis et al.: Method-Level Syntactic and Semantic Clustering for Microservice Discovery in Legacy Enterprise Systems

Region

Availability

Zone 1

Availability 

Zone 3

Amazon Database 

Migration Service

Availability

Zone 2

Region

Availability

Zone 1

Availability 

Zone 3

Availability

Zone 2

Enterprise System Microservice System

FIGURE 3. System implementation using Amazon Web Services.

TABLE 1. Lack of Cohesion comparison for 11 ChurchCRM business objects: Legacy Enterprise System, and Class-level and Method-level microservices.

BO # 1 2 3 4 5 6 7 8 9 10 11 Avg.

Enterprise System 61 188 853 7 4 1065 31 378 3064 13 17 516.45
Class-level MSs 58 188 820 7 3 1059 31 351 3012 10 15 504.90
Method-level MSs 351 325 28 325 325 253 153 276 210 91 210 234

TABLE 2. Structural Coupling comparison for ChurchCRM.

BO # 1 2 3 4 5 6 7 8 9 10 11 Avg.

Enterprise System 41 26 61 17 16 70 29 31 123 27 19 41.81
Class-level MSs 42 25 34 17 15 63 29 3 112 26 17 34.81
Method-level MSs 48 3 11 3 3 31 25 55 6 8 27 20

TABLE 3. Lack of Cohesion comparison for 18 SugarCRM business objects.

BO # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Avg.
Enterprise System 32 19 1255 698 1482 0 163 693 349 45 171 1803 1058 0 66 47 317 522 484.44
Class-level MSs 19 0 1201 626 1173 0 86 459 170 45 120 1027 587 0 36 5 590 268 356.22
Method-level MSs 15 3 1005 520 973 64 56 415 170 21 120 953 587 0 34 8 313 231 298.22

requests, comparing performance by the legacy enterprise
system, the microservices recommended by our new method-
level analysis, and those produced by ‘‘poorly-designed’’
microservices that fail to follow our recommendations.

Tables 7 and 8 show other system characteristics for Sugar-
CRM and ChurchCRM, respectively, again with each system
stressed by 100 and 200 simultaneous requests. (This was
done only for the AWS EC2 instances.) Values are shown for
the legacy enterprise system alone, the ES with microservices
created using our previous class-level clustering [20], the
ES with method-level clusters, and the ES with deliberately
poorly-designed microservices. Table 9 shows database per-
formance characteristics under the same circumstances.

Based on these experimental results we evaluated the ef-
fectiveness of the algorithms by answering the posed research
questions. Note that in order to answerRQ2we have summa-
rized the results we obtained using class-level microservice

discovery [20] in the second rows in Tables 7 to 9.
RQ1: Cohesion and Coupling Impact.When comparing

the cohesion and coupling results achieved by class-level and
method-level analysis, it is evident that the method-level anal-
ysis provided better cohesion and coupling values for both
SugarCRM and ChurchCRM (Tables 1 to 4). Specifically,
the method-level analysis improved the cohesion of software
modules of ChurchCRM and SugarCRM by 54.69% and
2.009% and the coupling of software modules by 52.16% and
40.23%, respectively, when compared with the original en-
terprise systems’ values. This is a considerable improvement
over class-level analysis, i.e., 2.24% improvement in cohesion
for ChurchCRM and 18.75% and 16.74% improvement in
coupling for SugarCRM and ChurchCRM, respectively.
It is important to note that the class-level clustering was

based on four different feature sets as detailed in our previous
research [20]. Our previous paper highlighted the improve-

10 POSTPRINT, June 2025



De Alwis et al.: Method-Level Syntactic and Semantic Clustering for Microservice Discovery in Legacy Enterprise Systems

TABLE 4. Structural Coupling comparison for SugarCRM.

BO # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Avg.
Enterprise System 24 12 121 63 48 4 99 24 29 29 28 101 67 0 16 10 82 85 46.77
Class-level MSs 12 2 116 53 48 4 87 18 22 29 27 79 45 0 15 3 41 83 38.00
Method-level MSs 3 7 16 14 16 33 23 33 96 6 56 45 14 69 21 0 18 32 27.89

TABLE 5. Performance for SugarCRM: Legacy Enterprise System, ES with
recommended microservices, and with ‘‘poorly-designed’’ microservices.

System No. of Exec. Time Avg. CPU Avg. CPU Avg.
Type Requests (ms) Percentage Percentage Network

EC2 DB (Kbs) DB
ES only 100 672000 3.212 1.61 5.67
ES only 200 1302000 2.963 1.97 6.42
ES & recommended MSs 100 648000 3.413 1.67 5.66
ES & recommended MSs 200 1302000 2.865 1.58 4.98
ES & ‘‘arbitrary’’ MSs 100 660000 3.103 1.67 5.32
ES & ‘‘arbitrary’’ MSs 200 1320000 3.108 1.60 5.36

TABLE 6. Performance for ChurchCRM.

System No. of Exec. Time Avg. CPU Avg. CPU Avg.
Type Requests (ms) Percentage Percentage Network

EC2 DB (Kbs) DB
ES only 100 150000 3.215 1.71 8.453
ES only 200 264000 4.905 2.013 12.32
ES & recommended MSs 100 114000 3.225 1.813 7.638
ES & recommended MSs 200 222000 2.080 1.730 9.702
ES & ‘‘arbitrary’’ MSs 100 120000 3.275 1.713 10.015
ES & ‘‘arbitrary’’ MSs 200 228000 3.373 1.636 9.969

ment we obtained over traditional syntactic analysis [10]–
[12] by introducing BO semantics. The results detailed in the
second rows of Tables 1 to 4 were the best values obtained
after introducing all the syntactic and semantic aspects in the
class-level clustering process. By contrast the method-level
analysis detailed herein improved the cohesion and coupling
values even further, as detailed in the third rows of Tables 1
to 4. As such, the new approach presented in this paper
outperforms both traditional syntactic clustering and even our
own previous class-level clustering technique.

RQ2: Scalability, availability and efficiency impact.Ac-
cording to Tsai et al. [40], the lower the measured number,
the better the scalability (Tables 7 to 9). Thus, it is evident
that the microservices developed based on the method-level
suggestions provided by our recommendation system for
SugarCRM and ChurchCRM managed to achieve: (i) 36.4%
and 47.9% scalability improvement in EC2 instance CPU

TABLE 7. System characteristics for SugarCRM EC2: Legacy Enterprise
System, and ES with class-level, method-level and ‘‘poorly-designed’’
microservices.

System Scalability Availability Availability Efficiency Efficiency
Type [CPU] [100] [200] [100] [200]
ES only 3.521 99.115 99.087 1.000 1.000
ES & class-level MSs 2.246 99.082 99.086 1.037 1.000
ES & method-level MSs 2.238 99.081 99.086 1.037 1.000
ES & ‘‘arbitrary’’ MSs 2.662 99.098 99.099 1.018 0.986

TABLE 8. System characteristics for ChurchCRM EC2.

System Scalability Availability Availability Efficiency Efficiency
Type [CPU] [100] [200] [100] [200]
ES only 3.565 99.385 99.418 1.000 1.000
ES & class-level MSs 1.859 95.000 94.871 1.316 1.189
ES & method-level MSs 1.856 95.000 94.871 1.316 1.189
ES & ‘‘arbitrary’’ MSs 2.874 95.238 95.000 1.250 1.158

TABLE 9. Database characteristics for SugarCRM and ChurchCRM.

System SugarCRM SugarCRM ChurchCRM ChurchCRM
Type Scalability Scalability Scalability Scalability

[CPU] [Network] [CPU] [Network]
ES only 2.972 2.759 3.109 3.405
ES & class-level MSs 2.532 2.352 2.751 3.663
ES & method-level MSs 2.529 2.351 2.749 3.653
ES & ‘‘arbitrary’’ MSs 2.544 2.680 2.657 2.769

utilization, respectively; (ii) 14.9% and 11.6% scalability im-
provement in database instance CPU utilization, respectively;
while achieving (iii) 3.7% and 31.6% execution efficiency,
respectively, as shown in the third rows of Tables 7 to 9.
As such, our recommendation system discovers MSs that
have better cohesion and coupling values than the original
enterprise system’s modules and can achieve improved cloud
capabilities such as high scalability, high availability and high
execution efficiency.
Furthermore, it is evident that the microservices developed

for SugarCRM and ChurchCRM based on the method-level
analysis were able to achieve 0.58% and 0.16% scalability
improvement compared to the microservices developed for
SugarCRM and ChurchCRM based on class-level analysis
(the second rows of Tables 7 to 9). However, there is little dif-
ference in availability between the microservices developed
based on both approaches.
RQ3: Recommended microservices vs arbitrary mi-

croservices. Compared to the poorly-designed, ‘‘arbitrary’’
microservices, those developed based on the method-level
suggestions provided by our recommendation system for
SugarCRM and ChurchCRM managed to achieve: (i) 36.4%
and 47.9% scalability improvement in EC2 instance CPU
utilization, respectively; (ii) 14.9% and 11.6% scalability im-
provement in database instance CPU utilization, respectively;
while achieving (iii) 3.7% and 31.6% execution efficiency,
respectively. However, when microservices were developed
in opposition to the suggestions provided by the recommen-
dation system, the EC2 instance CPU utilization was reduced
to 24.24% and 19.32% for SugarCRM and ChurchCRM,
respectively, while database instance CPU utilization was
reduced to 14.3% for SugarCRM. Furthermore, the execution
efficiency of SugarCRM and ChurchCRM was reduced to
1.8% and 2.5%, respectively. As such, it is evident that the
microservices developed by following the recommendations
of our system produce better system characteristics than those
of microservices developed against our recommendations.

C. LIMITATIONS
In this section we discuss two limitations of our approach.
Limitation of structural method similarity analysis. In

POSTPRINT, June 2025 11



De Alwis et al.: Method-Level Syntactic and Semantic Clustering for Microservice Discovery in Legacy Enterprise Systems

this research we used cosine similarity, partly because it’s
used elsewhere in the literature for similar clustering ap-
plications and, more importantly, so that we could directly
compare our new method-level results with those we previ-
ously produced at the class-level using cosine similarity [20].
However, the cosine values calculated might not provide an
accurate insight into structural method similarity since the
structural similarity may also depend on the terms used in
the definitions of the method names and descriptions given
in comments. This was mitigated to a certain extent by eval-
uating the code structure of the software systems before eval-
uating and verifying that the method names and comments
provide useful insights into the logic behind the methods that
implement the system. Nonetheless, there remain a number of
ways in which the discovery and matching process could be
improved, such as recognizing situations in which different
terms represent specifications or generalizations of the same
concept.

Limitation of microservice data orchestration. Given
that microservices are implemented independently with their
own databases, they must be able to synchronize their data
with the central database system and the other microservices
if required. Even though we achieved this to a certain extent
using the AWS data migration service that synchronizes the
central database with the microservices, data synchronization
between different microservices was not tested in the research
described herein.

V. RELATED WORK
Software remodularization [11] is considered as an NP-hard
graph partitioning problem. Traditionally, static analysis-
based software remodularization research has focused on
a system’s implementation through two areas of coupling
and cohesion evaluation. The first is structural coupling and
cohesion, which focuses on structural relationships between
classes and methods in the same module or in different mod-
ules [10], [11], [42]. The second is structural class/method
similarity (otherwise known as conceptual similarity of the
classes/methods) [12], [43]. This draws from information
retrieval (IR) techniques, for source code comparison of
classes/methods, under the assumption that similarly named
variables, methods, object references, tables and attributes in
database query statements, etc., infer conceptual similarity of
classes/methods.

Microservice derivation is the newest form of software re-
modulization and, as in our own research, various approaches
have typically relied on both primitive database operations to
help identify business objects and class hierarchies to help
identify business-level operations [44], but there has been
limited work to date on automating the process.

However, research into service-oriented architectures has
identified patterns that can help to develop microservices.
Early examples provided the main groups for such pat-
terns, namely decomposition, integration, database, observ-
ability and cross-cutting concern patterns [45], [46]. Richard-
son proposed thirteen different architecture segments based

on the functions they perform, namely decomposition, data
management, transactional messaging, testing, deployment,
cross-cutting concern, communication style, external API,
service discovery, reliability, security, observability and UI
patterns [47], as well as 44 patterns for implementing mi-
croservices [48]. Messina et al. focussed on the database
tier; the service is strictly coupled to the data, hence this
pattern is even stronger than the ‘‘database-server per ser-
vice’’ pattern, because the database itself acts as a business
service [49]. Microsoft has provided generalized patterns for
cloud implementations, which include most of the patterns
described by previous sources such as the ‘‘circuit breaker,’’
‘‘command query responsibility segregation,’’ and ‘‘gateway
aggregation’’ patterns [47]. Zimmerman et al. [18] provide
a consolidated development of microservice patterns and
categorizes them into: processing responsibilities of systems
(e.g., API, event, activity and other forms of processing and
information); data structures (e.g., parameter, object or linked
elements); quality management considerations (e.g., service
level agreements); and software evolution principles (e.g.,
version management).
With increasing interest in microservice architectures and

the development of microservice patterns, recent studies have
focussed on frameworks of comparison. A major influence
on the architectural concepts and patterns developments is
systems quality considerations [50]. In a recent survey [51],
numerous patterns were identified from the literature, classi-
fied in broad systems categories (DevOps, Frontend, Back-
end, Orchestration, Migration and IoT patterns), and linked
to quality attributes (flexibility, testability, elasticity, perfor-
mance, scalability, etc).
When we consider the essence of most of these patterns

it is evident that they stem from early capability-driven and
domain-driven design principles [52], which basically say
that microservices are developed around business objects. As
such, each microservice should be a component which con-
tains operations related to a single BO. Thus, business objects
provide important semantic aspects in microservice deriva-
tion and development [2]. For instance, function hierarchies
can be derived from BO dependencies in databases [25] and
ERP logs can support process discovery based on BOs [26].
Considering such BO relationships, our own research cap-
tures both ‘‘syntactic’’ and ‘‘semantic’’ relationships in the
MS derivation process by considering the information inher-
ent in the program code and captured in system execution logs
and database relationships [20], [21], [27], [28].
However, system execution logs can provide only limited

syntactic insights about the system. Klock et al. optimized
static relationships to improve already developed microser-
vice systems by clustering different microservices to groups
which perform highly related tasks [31] and, more recently,
Ding et al. prioritised runtime performance as a heuristic for
extracting microservices from legacy systems [32]. However,
to the best of our knowledge, previous research still lacks a
technique which combines the analysis of both the syntactic
and semantic relationships during system remodularization

12 POSTPRINT, June 2025



De Alwis et al.: Method-Level Syntactic and Semantic Clustering for Microservice Discovery in Legacy Enterprise Systems

for microservices. In our previous work we presented class-
level analysis of enterprise systems while considering syn-
tactic and semantic aspects of the system to help develop
microservices [20]. In the current article we have further
extended this approach to method-level analysis.

VI. CONCLUSION
We have presented a method-level technique for automated
analysis and remodularization of enterprise systems as mi-
croservices by combining techniques which consider seman-
tic knowledge about business object relationships with syn-
tactic knowledge about operation call structures. Unlike pre-
vious class-level approaches, which typically produce multi-
function services, our technique has the potential to iden-
tify smaller-scale, single-functionality microservices as are
needed in contemporary high-throughput, data-oriented net-
works [22].

This article answered three research questions designed to
compare the microservice recommendations made by previ-
ous class-level analyses with method-level analyses. To do so
a prototype recommendation system was developed based on
the algorithms presented herein and validation was conducted
by implementing the microservices recommended by the pro-
totype for two open source enterprise systems, SugarCRM
and ChurchCRM. The experiment showed that the method-
level approach derived clusters which led to microservices
with better cohesion and coupling characteristics than those
based on class-level analysis.

Specifically, the method-level analysis improved the cohe-
sion of software modules of ChurchCRM and SugarCRM by
54.69% and 2.009% and coupling of software modules by
52.16% and 40.23% respectively, when compared with the
enterprise systems’ values. This is a considerable improve-
ment compared to the results obtained by class-level cluster-
ing (i.e., 2.24% improvement in cohesion for ChurchCRM
and 18.75% and 16.74% improvement in coupling for Sugar-
CRM and ChurchCRM, respectively). This answered the first
research question (RQ1).

Furthermore, the microservices developed based on the
suggestions provided by the prototype achieved better scal-
ability, availability and processing efficiency than microser-
vices which do not align with the recommendations. Specif-
ically, the microservices developed based on the suggestions
provided by the recommendation system for SugarCRM and
ChurchCRM managed to achieve: (i) 36.4% and 47.9% scal-
ability improvement in EC2 instance CPU utilization, re-
spectively; (ii) 14.9% and 11.6% scalability improvement in
database instance CPU utilization, respectively; while achiev-
ing (iii) 3.7% and 31.6% execution efficiency, respectively.
Furthermore, it was evident that the microservices developed
for SugarCRM and ChurchCRM based on the method-level
analysis were able to achieve 0.58% and 0.16% scalabil-
ity (refer to the second rows of Tables 7 to 9). This was
a substantial improvement compared to the microservices
developed for SugarCRM and ChurchCRM based on class-
level analysis. This answered the second and third research

questions (RQ2, RQ3).
As future work we will extend the method-level analysis

to derive components which are compatible for Internet of
Things (IoT) integration. Given that IoT applications mainly
focus on processing at network edge locations, this will re-
quire derivation of components which need only low pro-
cessing power. We believe the single operation separation
achievable by method-level analysis will provide insights
capable of identifying such components.

REFERENCES
[1] T. Erl, SOA Design Patterns. Pearson Education, 2008.
[2] S. Newman, Building Microservices: Designing Fine-Grained Systems.

O’Reilly Media, Inc., 2021, second edition.
[3] M. Fowler, ‘‘Microservices Guide,’’ August 2019, https://

martinfowler.com/microservices/.
[4] T. Cerny, M. J. Donahoo, and J. Pechanec, ‘‘Disambiguation and compar-

ison of SOA, microservices and self-contained systems,’’ in Proceedings
of the International Conference on Research in Adaptive and Convergent
Systems (RACS), 2017, pp. 228–235.

[5] A. Barros, K. Duddy,M. Lawley, Z.Milosevic, K. Raymond, and A.Wood,
‘‘Processes, roles, and events: UML concepts for enterprise architecture,’’
in International Conference on the UnifiedModeling Language. Springer,
2000, pp. 62–77.

[6] T. Schneider, SAP Business ByDesign Studio: Application Development.
Galileo Press Boston, 2012.

[7] G. Decker, A. Barros, F. M. Kraft, and N. Lohmann, ‘‘Non-
desynchronizable service choreographies,’’ in Proceedings of the
International Conference on Service-Oriented Computing (ICSOC 2008).
Springer, 2008, pp. 331–346.

[8] A. Barros, G. Decker, and M. Dumas, ‘‘Multi-staged and multi-viewpoint
service choreography modelling,’’ in 2007 Proceedings of the Workshop
on Software EngineeringMethods for Service Oriented Architecture (SEM-
SOA), Hannover, Germany. CEURWorkshop Proceedings, vol. 244. Cite-
seer, 2007, pp. 1–15.

[9] A. Barros, G. Decker, M. Dumas, and F. Weber, ‘‘Correlation patterns
in service-oriented architectures,’’ in Proceedings of the 2007 Interna-
tional Conference on Fundamental Approaches to Software Engineering.
Springer, 2007, pp. 245–259.

[10] K. Praditwong, M. Harman, and X. Yao, ‘‘Software module clustering
as a multi-objective search problem,’’ IEEE Transactions on Software
Engineering, vol. 37, no. 2, pp. 264–282, 2010.

[11] B. S. Mitchell and S. Mancoridis, ‘‘On the automatic modularization of
software systems using the Bunch tool,’’ IEEE Transactions on Software
Engineering, vol. 32, no. 3, pp. 193–208, 2006.

[12] D. Poshyvanyk and A. Marcus, ‘‘The conceptual coupling metrics for
object-oriented systems,’’ in Proceedings of the 22nd IEEE International
Conference on Software Maintenance. IEEE, 2006, pp. 469–478.

[13] T. Matias, F. Correia, J. Fritzsch, J. Bogner, H. Ferreira, and A. Restivo,
‘‘Determining microservice boundaries: A case study using static and
dynamic software analysis,’’ in Proceedings of the 2020 European Con-
ference on Software Architecture (ECSA), ser. Lecture Notes in Computer
Science, A. Jansen, I. Malavolta, H. Muccini, I. Ozkaya, and O. Zimmer-
mann, Eds., vol. 12292. Springer Verlag, 2020.

[14] I. Trabelsi, M. Abdellatif, A. Abubaker, N. Moha, S. Mosser, S. Ebrahimi-
Kahou, and Y.-G. Guéhéneuc, ‘‘From legacy to microservices: A type-
based approach for microservices identification using machine learning
and semantic analysis,’’ Journal of Software: Evolution and Process,
vol. 35, no. 10, Oct. 2022.

[15] L. Krause, ‘‘Microservices: Patterns and applications: Designing fine-
grained services by applying patterns,’’ 2014, self published.

[16] E. Gamma, Design patterns: Elements of reusable object-oriented soft-
ware. Pearson Education India, 1995.

[17] N. Malhotra, ‘‘Microservices design patterns,’’ ValueLabs, Tech. Rep.,
2023, white paper. [Online]. Available: https://www.valuelabs.com/wp-
content/uploads/2023/05/Microservices-Design-Patterns.pdf

[18] O. Zimmermann,M. Stocker, D. Lübke, U. Zdun, and C. Pautasso,Patterns
for API Design: Simplifying Integration with Loosely Coupled Message
Exchanges. Addison-Wesley, 2022.

POSTPRINT, June 2025 13



De Alwis et al.: Method-Level Syntactic and Semantic Clustering for Microservice Discovery in Legacy Enterprise Systems

[19] I. Candela, G. Bavota, B. Russo, and R. Oliveto, ‘‘Using cohesion and
coupling for software remodularization: Is it enough?’’ ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 25, no. 3, p. 24,
2016.

[20] A. A. C. De Alwis, A. Barros, C. Fidge, and A. Polyvyanyy, ‘‘Remodular-
ization analysis for microservice discovery using syntactic and semantic
clustering,’’ in Proceedings of the 32nd International Conference on Ad-
vanced Information Systems Engineering (CAiSE 2020), ser. Lecture Notes
in Computer Science, vol. 12127. Springer-Verlag, 2020, pp. 3–19.

[21] ——, ‘‘Microservice remodularisation ofmonolithic enterprise systems for
embedding in industrial iot networks,’’ in Proceedings of the 33rd Interna-
tional Conference on Advanced Information Systems Engineering (CAiSE
2021), ser. Lecture Notes in Computer Science, vol. 12751. Springer,
2021, pp. 432–448.

[22] T.Mauro, ‘‘Adoptingmicroservices at Netflix: Lessons for architectural de-
sign.’’ Feb. 2015, https://www.f5.com/company/blog/nginx/microservices-
at-netflix-architectural-best-practices.

[23] M. Joselyne, G. Bajpai, and F. Nzanywayingoma, ‘‘A systematic frame-
work of application modernization to microservice based architecture,’’
in Proceedings of the 2021 International Conference on Engineering and
Emerging Technologies (ICEET), Turkey. IEEE, 2021, pp. 1–6.

[24] A. Krause, C. Zirkelbach, W. Hasselbring, S. Lenga, and D. Kroger, ‘‘Mi-
croservice decomposition via static and dynamic analysis of the monolith,’’
in Proceedings of the 2020 IEEE International Conference on Software
Architecture Companion (ICSA-C), Brazil. IEEE, 2020, pp. 9–16.

[25] R. Pérez-Castillo, I. García-Rodríguez de Guzmán, I. Caballero, andM. Pi-
attini, ‘‘Software modernization by recovering web services from legacy
databases,’’ Journal of Software: Evolution and Process, vol. 25, no. 5, pp.
507–533, 2013.

[26] X. Lu, M. Nagelkerke, D. van de Wiel, and D. Fahland, ‘‘Discovering
interacting artifacts from ERP systems,’’ IEEE Transactions on Services
Computing, vol. 8, no. 6, pp. 861–873, 2015.

[27] A. A. C. De Alwis, A. Barros, C. Fidge, and A. Polyvyanyy, ‘‘Discovering
microservices in enterprise systems using a business object containment
heuristic,’’ in Proceedings of the 26th Interenational Conference on Co-
operative Information Systems (CoopIS 2018), ser. Lecture Notes in Com-
puter Science, vol. 11230. Springer-Verlag, 2018, pp. 60–79.

[28] A. A. C. De Alwis, A. Barros, A. Polyvyanyy, and C. Fidge, ‘‘Function-
splitting heuristics for discovery of microservices in enterprise systems,’’
in Proceedings of the 16th International Conference on Service Oriented
Computing (ICSOC 2018), ser. Lecture Notes in Computer Science, vol.
11236. Springer-Verlag, 2018, pp. 37–53.

[29] T. Halpin and T. Morgan, Information modeling and relational databases.
Morgan Kaufmann, 2010, second edition.

[30] W. Assunção, T. Colanzi, L. Carvalho, and J. Pereira, ‘‘A multi-criteria
strategy for redesigning legacy features as microservices: An industrial
case study,’’ in Proceedings of the 2021 IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, 2021.

[31] S. Klock, J. M. E. Van Der Werf, J. P. Guelen, and S. Jansen, ‘‘Workload-
based clustering of coherent feature sets in microservice architectures,’’ in
Proceedings of the IEEE International Conference on Software Architec-
ture (ICSA 2017). IEEE, 2017, pp. 11–20.

[32] Z. Ding, Y. Xu, B. Feng, and C. Jiang, ‘‘Microservice extraction based
on a comprehensive evaluation of logical independence and performance,’’
IEEE Transactions on Software Engineering, vol. 50, no. 5, May 2024.

[33] SAP, ‘‘Tools and programming languages,’’ Aug. 2015, https://
developers.sap.com/topics/tools-programming-languages.html.

[34] IFS World Operations, ‘‘IFS applications architecture,’’ Jun. 2025, https://
docs.ifs.com/techdocs/Foundation1/010_overview/100_architecture.

[35] E. H. Nooijen, B. F. van Dongen, and D. Fahland, ‘‘Automatic discovery
of data-centric and artifact-centric processes,’’ in Proceedings of the 2012
International Conference on Business Process Management. Springer,
2012, pp. 316–327.

[36] G. Lebanon, Y. Mao, and J. Dillon, ‘‘The locally weighted bag of words
framework for document representation,’’ Journal of Machine Learning
Research, vol. 8, pp. 2405–2441, Oct. 2007.

[37] G. Shahmohammadi, S. Jalili, and S. M. H. Hasheminejad, ‘‘Identification
of system software components using clustering approach.’’ Journal of
Object Technology, vol. 9, no. 6, pp. 77–98, 2010.

[38] K. Mahdavi, M. Harman, and R. M. Hierons, ‘‘A multiple hill climbing
approach to software module clustering,’’ in Proceedings of the Interna-
tional Conference on Software Maintenance (ICSM 2003). IEEE, 2003,
pp. 315–324.

[39] A. Zaman, P. Matsakis, and C. Brown, ‘‘Evaluation of stop word lists in
text retrieval using Latent Semantic Indexing,’’ in Proceedings of the Sixth
International Conference on Digital Information Management. IEEE,
2011, pp. 133–136.

[40] W.-T. Tsai, Y. Huang, and Q. Shao, ‘‘Testing the scalability of SaaS
applications,’’ in Proceedings of the 2011 IEEE International Conference
on Service-Oriented Computing and Applications (SOCA). IEEE, 2011,
pp. 1–4.

[41] E. Bauer and R. Adams, Reliability and Availability of Cloud Computing.
John Wiley & Sons, 2012.

[42] H. Abdeen, H. Sahraoui, O. Shata, N. Anquetil, and S. Ducasse, ‘‘Towards
automatically improving package structure while respecting original de-
sign decisions,’’ inProceedings of the 20thWorking Conference on Reverse
Engineering (WCRE). IEEE, 2013, pp. 212–221.

[43] A.Marcus, D. Poshyvanyk, and R. Ferenc, ‘‘Using the conceptual cohesion
of classes for fault prediction in object-oriented systems,’’ IEEE Transac-
tions on Software Engineering, vol. 34, no. 2, pp. 287–300, 2008.

[44] F. Freitas, A. Ferreira, and J. Cunha, ‘‘Refactoring Java monoliths into
executable microservice-based applications,’’ in Proceedings of the 25th
Brazilian Symposium on Programming Languages (SBLP ’21). Associa-
tion for Computing Machinery, 2021, pp. 100–107.

[45] R. Bhojwani, ‘‘Popular design patterns for microservices architec-
tures,’’ Aug. 2022, https://dzone.com/articles/popular-design-patterns-for-
microservices-architec.

[46] M. Udantha, ‘‘Microservice architecture and design patterns for microser-
vices,’’ Jul. 2019, https://dzone.com/articles/microservice-architecture-
and-design-patterns-for.

[47] C. Richardson,Microservices fromDesign toDeployment. Springer, 2016.
[48] ——, Microservices Patterns with Examples in Java. Manning, 2018.
[49] A. Messina, R. Rizzo, P. Storniolo, M. Tripiciano, and A. Urso, ‘‘The

database-is-the-service pattern formicroservice architectures,’’ inProceed-
ings of the International Conference on Information Technology in Bio- and
Medical Informatics. Springer, 2016, pp. 223–233.

[50] S. Li, H. Zhang, Z. Jia, C. Zhong, C. Zhang, Z. Shan, J. Shen, and M. A.
Babar, ‘‘Understanding and addressing quality attributes of microservices
architecture: A systematic literature review,’’ Information and Software
Technology, p. 106449, 2020.

[51] G. Márquez, H. Astudillo, and R. Kazman, ‘‘Architectural tactics in soft-
ware architecture: A systematic mapping study,’’ Journal of Systems and
Software, vol. 197, Mar. 2023.

[52] E. Evans and E. J. Evans, Domain-driven design: Tackling complexity in
the heart of software. Addison-Wesley Professional, 2004.

14 POSTPRINT, June 2025



De Alwis et al.: Method-Level Syntactic and Semantic Clustering for Microservice Discovery in Legacy Enterprise Systems

DR. ADAMBARAGE ANURUDDHA CHAT-
HURANGA DE ALWIS is a software engineer
with certifications in Google Cloud (Professional
Cloud Architect and Associate Cloud Engineer)
and Amazon Web Services (Associate Cloud Ar-
chitect). He completed his Ph.D. at the School
of Information Systems, Queensland University of
Technology, Australia. His research interests in-
clude service development and management, sys-
tem reengineering, cloud computing and optimisa-

tion. His current research is focused on reengineering enterprise systems into
microservices.

PROF. ALISTAIR BARROS is Head of the School
of Information Systems, Queensland University
of Technology, Australia. He has ICT experi-
ence across industrial, academic, industrial R&D
and industry roles, including as Global Research
Leader and Chief Development Architect at SAP
AG, the third largest software company world-
wide. His research interests include the design,
engineering and evolution of enterprise systems
platforms in contemporary cyber-physical settings,

supported by Cloud, Internet-of-Things and Blockchain infrastructure. He
has led large research projects across Europe and Australia including for
the Smart Services CRC, Internet of Services projects of EU Framework
Program 7 and German BMBF, and Australian Research Council projects.

DR. COLIN FIDGE is an Adjunct Professor af-
filiated with the School of Computer Science,
Queensland University of Technology. His re-
search interests include safety-critical, mission-
critical and security-critical systems engineering,
especially in the defence and energy sectors. He
has extensive experience in research project man-
agement, including leading 23 externally-funded
projects, 14 through Australian Research Coun-
cil grants, one from the Australian Learning and

Teaching Council and a variety of others through industry and government
funding in the areas of industrial asset management and cyber security.

A/PROF. ARTEM POLYVYANYY is an Associate
Professor at the School of Computing and Infor-
mation Systems, Faculty of Engineering and Infor-
mation Technology, at theUniversity ofMelbourne
(Australia), where he leads the Process Science and
Technology research group. He is a Vice-Chair of
the Steering Committee of the IEEE Task Force on
Process Mining. His research and teaching inter-
ests include Computing Systems, Distributed Sys-
tems, ProcessMining, Process Querying, Artificial

Intelligence, and Algorithms. Artem is the editor of and a contributor to the
book entitled Process Querying Methods.

POSTPRINT, June 2025 15


